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F.1 What is a Fluid?

So far, we have focused on understanding the mechanics of solid objects (including the microscopic
origins of the Young’s modulus, speed of sound, and specific heat) through the Momentum and
Energy Principles as applied to a ball-and-spring model. These same two fundamental principles
can also describe the mechanics of fluids. As with other topics this semester, we will make use
of both microscopic and macroscopic reasoning to understand the statics and dynamics of fluid
systems.

A “fluid” is generally meant to include both gases and liquids, with the key distinguishing
feature being whether the fluid is compressible (gas) or not (liquid). We observe that a gas will
expand to fill a closed container, while a fluid will simply settle to the bottom. The mechanism
behind this ability to fill a container lies in whether the thermal energy of the molecules is enough
to destroy all connection to their neighbors. Thus, by adding thermal energy to a system, you can
cause a phase transition from liquid to gas. (In fact, adding thermal energy to a system will also
cause a phase transition from solid to liquid.)

Fluids can be distinguished from solids in one key macroscopic way: the cannot hold their own
shape. This results from a specific microscopic difference: due to having enough thermal energy
to break bonds with their neighbors, the molecules of a fluid are constantly rearranging among
themselves. Thus, there is no crystalline structure of the sort we used for the ball-and-spring model
of a solid. In general, it is also true solids have more closely-packed molecules, and therefore a
higher density than the liquid phase of the same material. (An interesting exception to this is ice.)

We can model the microscopic behavior of a fluid as a multi-particle system of molecules moving
and colliding randomly, or as a macroscopic object with a mass and a center-of-mass velocity. In
the microscopic view, the particles have thermal energy, and interact with each other through inter-
molecular forces which typically have short-range repulsion (due to overlapping electron orbitals)
and long-range attraction (due to something called the van der Waals force). This contrasts with
the ball-and-spring model of a solid, where the atoms were at fixed locations in a crystal. The
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shape of a fluid is typically determined by the shape of its container, and for liquids there is a
surface tension which holds together the molecules along any unbounded surface. Macroscopically,
we observe that a fluid can readily rearrange its shape in response to external forces.

F.2 Fluid Statics: Pressure

F.2.1 Superposition of pressures

Consider a the ground at the bottom of a lake. We want to calculate the force that the water and
the air above exert on a patch of the bottom with cross-sectional area A:

h
1 atm

A

lake

air

ground

volume V = hA
mass m = hA

P
tot

 = hg + 1 atm
x

y

z

First, we will consider the system macroscopically, using the superposition of forces which are
pushing down on the patch. Start by considering the “block” of water and the “block” of air which
are in a column above the patch of ground: they are pushing down, and the ground is pushing back
up with an equal and opposite force (since we observe no change in momentum, ∆~pwater = 0). We
can calculate the mass of each “block” (water and air) and determine the force they exert in the
−ŷ-direction:

Fwater
y = −mwaterg = −(ρwaterV )g = −(ρwaterAhwater)g

F air
y = −mairg = −(ρairV )g = −(ρairAhair)g

Where we have taken advantage of the fact that we know the volume V of the block is the area
A multiplied by its height h. We can convert these expressions to be written as pressures instead
of forces. Recall from our discussion of Young’s modulus that pressure is a force per unit area, and
that we’re talking about the same area A in both of the above expressions.

Pwater =
|Fwater|

A
= ρwaterghwater

Pair =
|Fair|

A
= ρairghair

Ptot = Pair + Pwater

Let’s consider the relative magnitude of these two contributing pressures. While the column
of air above the earth’s surface is tens of kilometers thick, it is also about 1/1000 as dense as
water. Air pressure is roughly constant, but does depend on both the altitude (affects hair) and the
particular weather conditions (affects ρair). For convenience, the pressure unit “one atmosphere”
(abbreviated 1 atm) has been defined as 105 N/m2 = 105 Pa. This is the air pressure which pushes
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inward on us all the time as we walk around. To get a sense of its magnitude, we can compare it
to the water pressue at the bottom of a 1 m deep lake.

Pwater = ρwaterghwater

=
(

1000
kg
m3

) (
9.8

m
s2

)
(1m)

≈ 104Pa

This water pressure is 1/10 the pressure from the air, and we can computer the total pressure
at the bottom of this 1-meter deep lake by using superposition:

Ptot = Pwater + Pair = 104Pa + 105Pa = 1.1 × 105Pa

Underwater Pressure Changes

A scuba diver descends by 15 meters, and on the way down she must “pop” her ears to equilibrate
them with the changing pressure. What change in fluid pressure does she experience? At the upper
location

Pi = ρghi + 1atm

and at the lower location
Pf = ρghf + 1atm.

Therefore, ∆P = ρg∆h. Notice that the atmospheric pressure has cancelled out during the sub-
traction to determine ∆P : it’s only the change in depth that matters.

There is a practical consideration in this pressure change with depth. The gas in the diver’s
lungs needs to balance against this fluid pressure, so each breath the scuba diver breathes contains
more molecules of gas to provide more collisions and hence more force. Therefore, she will use up
her air tank at a faster rate the deeper she dives.

F.2.2 Microscopic origins of pressure

Read section 4.17 from M&I: Modern Mechanics (Vol. 1)

Pressure is a property that exists at any point in the fluid, not just at the bottom. What is
providing this pressure? The collisions of the fluid molecules provide an impulse each time they
bounce off an other objects: ∆~p

∆t = ~Fnet for each (of many) molecules.
Consider an imaginary cube of water (surrounded by other water which is no different from the

water inside the cube), which is stationary.
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As a molecule of the surrounding water bounces off the side of the box, it applies a force on the
box. Of course, many collisions happen per second due to the large number of molecules. Since
the box is stationary, we know from the Momentum Principle that ~Fnet = ~Fmolecules + ~Fgrav = 0
for all of these molecules plus the force due to Earth’s gravity. We can also write ~Fmolecules =
~Fleft + ~Fright + ~Ffront + ~Fback + ~Ftop + ~Fbottom What can we say about the fluid forces on the left
and right sides of the box? Front and back? Top and bottom?

From vector force balance, we know that ~Fleft = −~Fright in the x̂-direction and ~Ffront = −~Fback

in the ẑ-direction. However, this isn’t true for the top and bottom surfaces, since we also have a
gravitational force acting in the −ŷ-direction. Instead, ~Ftop + ~Fbottom + ~Fgrav = 0 in order to explain
why the box remains stationary. This is the direction which we need to examine carefully.

From what we know already learned about how pressure changes with depth,

Ptop = ρwatergh + 1atm

(acting on L2 in the downward direction)
and

Pbottom = ρwaterg(h + L) + 1atm

(acting on L2 in the upward direction)
where y is the distance between the top of the box and the surface of the water and Patm is the
atmospheric pressure. In order for the forces in the y-direction to balance

PtopL
2(−ŷ) + PbottomL2ŷ − mwatergŷ = 0

and from our calculation of Ptop and Pbottom we can write

ρwatergL3 = mwaterg.

This makes sense, since ρwaterL
3 = mwater is the usual definition of density, and we are thus

confident that this force balance analysis make sense. To gain a deeper appreciation, look back
through the chain of equations and notice that the mwater came from from the water inside the
cube, and the ρL3 came from the water outside the cube.

F.2.3 Archimedes Principle

Therefore, if we don’t have a cube of water, but instead a cube made of a different material, we can
nonetheless work through the exact same argument outlined above, but the forces will no longer
balance since mwater will be replaced by mobj . This allows us to write Archimedes principle:
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the force from the surrounding fluid on a partially or fully submerged object is equal in magnitude
to the weight of the fluid displaced. The net force on the object can be written

~Fnet = ~Ffluid + ~Fgrav

The direction of the net force comes from the relative densities of the object and the fluid: an
object denser than the fluid will experience a downward force, while an object less dense than the
fluid will experience and upward force. If the density ρ of the object were less than density of the
surrounding fluid

Fy,net = −ρobjV g + ρfluidV g > 0

and therefore the object will experience a net upward force and start to rise. Similarly, if the
density ρ of the object were greater than that of the surrounding fluid

Fy,net = −ρobjV g + ρfluidV g < 0

and the object will experience a net downward force and start to sink.
Microscopically, what is going on? If we return to the image of the cube with fluid molecules

bouncing off its surfaces, we need to understand what is different about the collisions at the top and
the bottom of the cube. It turns out that the density of the fluid molecules will be just slightly higher
at the bottom, due to the increased pressure squeezing the molecules closer together. Therefore,
there are slightly more molecules near the bottom surface (compared to the top) and thus more
collisions per second and more transmitted force.

F.2.4 Archimedes Principle Example

Imagine holding an air-filled 2 L soda bottle (V = 2000 cm3) underwater. You have used a scale to
determine that the mass of the soda bottle is mbottle = 50g. When you push it down to submerge
it completely in a pool, what force is required to hold it underwater?

The submerged bottle displaces 2000 cm3 of water, which has a density of 1 g/cm3, and therefore
a mass of 2 kg. From Archimedes principle, this “displaced water” provides an upward force of
mwaterg = 19.6 N upward on the bottle. In addition, the gravitational force on the bottle is
mbottleg = 0.49 N in the downward direction.

From the Momentum Principle for the static system consisting of only the bottle:

∆~p

∆t
= ~Fnet = 0

~Fnet = ~Ffluid + ~Fgrav + ~Fhand = 0

and we want to solve for the ~Fhand required to hold it stationary underwater.

〈0, 0, 19.6〉N + 〈0, 0,−0.49〉N + 〈Fx, Fy, Fz〉 = 0

Therefore, Fx = Fy = 0 and Fz = (0.49 − 19.6)N = −19.1N , which means we have to push
downward with 19.1 N of force to keep the bottle submerged.
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F.3 Hydraulics: Pascal’s Principle

Because the molecules of a fluid are continually rearranging, every location within a fluid at the
same height has the same pressure as any other. If this weren’t the case, then the molecules in
the higher-pressure areas would be pushed into the lower pressure areas and thus re-equilibrate the
pressure. Therefore, consider the following system, in which a tube of fluid has openings of two
difference sizes at its two ends.

M

F=〈0,−F y ,0 〉

(1) (2)P = constant

F g=〈0,−Mg ,0〉

Rr
x

y

z

You push down on end 1 (the narrow end) with a force ~F and want to raise the mass M which
sits on end 2 (the wide end) at a constant, slow velocity. You will move slowly enough that the fluid
can keep its pressure equilibrated at all times: it acts like a static fluid as described above. Because
the mass is moving at a constant velocity, there is no change in momentum and ∆~p/∆t = 0. We
will use the Momentum Principle to solve for the force required, as a function of the other variables
drawn in the figure above.

For a system composed of the fluid and the surroundings containing you (providing ~F ), the
Earth, and the mass M , we know ∆~pfluid

∆t = ~Fnet = 0 for the fluid. We also have two different ways
to calculate the pressure in the tube:

P =
Fy

A1
=

Fy

πr2

P =
Mg

A2
=

Mg

πR2

Since these two pressures must be equal (or else the fluid would rearrange to make it so),

Fy

πr2
=

Mg

πR2

and, solving for Fy,

Fy = Mg
( r

R

)2
.

Therefore, the smaller the ratio r/R, the less force you need to provide to move the mass M at
constant velocity (or to hold it in place with v = 0). This is how hydraulic brakes and automobile
repair shop lifts work.

What is the microscopic explanation for why the force Fy is NOT just equal to Mg? End 2
has a larger area, so more molecules are colliding with it, providing a larger force (even though the
pressure is the same at both ends).
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F.4 Fluid Dynamics

Read section 12.2 from M&I: Modern Mechanics (Vol. 1)

F.4.1 Measuring Flow Rates

We will now shift our attention to fluids which are in motion, by first considering systems in which
they move at constant velocity. Consider a tube with water filling up a bucket from an unseen
source:

x

y

z

x

A V
 t

Zooming in on the molecules in the pipe, we can see that there are two types of motions going
on. First, the molecules are bouncing off each other (and the walls of the pipe) due to their thermal
motions. These velocities can be a few hundred m/s at any given instant, but in a (somewhat)
random direction. However, the molecules are on average moving more to the right than to the
left, since we see them flowing out of the pipe into the bucket, so we know that the direction of
their individual velocities isn’t completely random. On average, they have a larger component of
their velocity in the +x̂ direction than in the −x̂ direction

At the macroscopic level, a segment of water with volume ∆V enters the pipe at the left, moves
to the right and fills a bucket at a rate measured in volume per unit time. Here, we use ∆ to mean
a discrete piece of a particular variable, in the same sense that you have used it in calculus class.

∆V = ∆x∆y ∆z

= A∆x

= A

(
∆x

∆t

)
∆t

= A vave ∆t

Thus, we can use this expression to define a relationship between the average volume flow rate
∆V /∆t and the average velocity of the fluid molecules (in the same direction that the flow is
happening):

∆V

∆t
= A vave

Since volume flow rates are variously measured in liters/second or m3/sec, it might be helpful to
know that 1000 L = 1 m3 = (10 cm)3.
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F.4.2 Calculating Flow Rates

For example, what is the average fluid velocity (in ft/sec) of the Haw River when it has a flow rate
of 2000 ft3/sec? The river depth was 6.5 feet at the time of this measurement, and the width of
the Haw River at this particular geographic location is about 120 ft.

∆V

∆t
= A vave = 2000ft3/s

A = (6.5ft) × (120ft) = 780ft2

vave = 2.5ft/s

Note that if a boat were moving with the current (an approximation which doesn’t correctly
address the forces between the boat and the water), then this is how fast you would see the boat
move downstream. If you wanted to know how much water was moving downstream, then the
volume flow rate of 2000 ft3/sec number would be more useful.

F.4.3 Energy Principle and Average Fluid Velocity

To show that vave really measures the average speed of the molecules in a meaningful way, consider
pointing a garden hose directly upwards and measuring how high the fluid goes. This is a case
where the Energy Principle is useful to describe the conversion of the fluid’s kinetic energy to
gravitational potential energy between the water and the Earth. Let’s assume that the speed of
the water is vave and is coming out of a tube pointed directly upwards. We will pick a segment of
fluid of mass m and follow it upward, ignoring the pieces of fluid ahead or behind it.

system: segment of water + earth

∆E = ���Wext + ��Q

W,Q = 0 since there is nothing external (neglecting friction) Only two energies (kinetic, potential)
are changing in this situation, so:

∆K + ∆Ugrav = 0

which we can re-write
Ki + Ui = Kf + Uf

and substitute in our observed height, mass, and velocity:

1
2
mv2

i + mghi =
1
2
mv2

f + mghf

1
2
m(v2

i − v2
f ) = mg(hf − hi)

1
2

(
v2
i − v2

f

)
= g(hf − hi)

For a reasonable initial velocity vi = 5 m/s, and final position at the top of the trajectory
(vf = 0 m/s), we can solve for ∆h = hf − hi.
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hf − hi =
v2
i

2g
= 1.28m

If you wanted to measure how big of an effect friction was having, you could first find
vave for a hose of known diameter by filling a bucket to measure ∆V/∆t). Then, you
could measure the height the water reaches when the hose points directly upwards, and
compare to what you calculated above. How can you account for the over-estimation of
height?

F.4.4 Continuity of Flow

Sometimes, you want to change the velocity of a fluid. In the garden hose example above, you
might do this by putting your thumb partway over the opening. From experience, we know that
the water will then exit the hose more quickly and you can thereby spray more distant parts of the
garden.

We can generalize this situation to a pipe which changes diameter as the fluid flows through it.

A
1

A
2

x
2

tx
1

t

V/t V/t

x

y

z

We’ll assume that the fluid is incompressible (e.g. a liquid, rather than a gas), so it can’t just squeeze
itself down to a smaller size. As the fluid moves from left to right, it is confined to a narrower
space, but the same volume of fluid/sec needs to keep moving through the pipe. Therefore, the
flow rate is constant and from our definition of flow rate we know that

∆V

∆t
= A1v1 and

∆V

∆t
= A2v2

Therefore, the narrower pipe has to have a faster velocity in order to keep up with the flow rate,
and

A1v1 = A2v2

for two portions of the same pipe. This is called a continuity equation for the fluid, and is related
to conservation of mass.

If you examine a stream of water coming out of a faucet, you’ll notice that as the stream
moves downwards, it narrows. What does this tell you about the average velocity of the
water molecules further down in the stream? Can you argue why this should be the case
from the Energy Principle?
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F.5 Bernoulli’s Equation

What if we wanted to write ∆~p = ~Fnet∆t for a piece of moving fluid within a larger flow? Motion
(momentum) affects pressure (in ~Fnet), but pressure also affects the motion! This means that
the situation gets quite complicated. You can write the Momentum Principle for a fluid (called
the Navier-Stokes Equation), but it’s a nonlinear partial differential equation and best left for a
specialized course on fluid dynamics.

However, it turns out that for a special case of problems, the Energy Principle can be informative
and is significantly simpler to calculate. Imagine a ∆V of moving fluid within a long tube of
changing diameter, which moves from one point to another within the flow (left to right), it’s being
pushed from the left by one pressure, and pushed from the right by another, smaller, pressure. In
both cases, the pressure provides a force acting over a distance. For problems that looks something
like this (even if the “tube” is imaginary: called a streamline), we can use Bernoulli’s Equation,
which is a fluid-specific interpretation of the Energy Principle.

F.5.1 Derivation of Bernoulli’s Equation

Consider a particular segment of fluid moving along an imaginary tube. We’ll make an unusual
choice of system: the chosen segment of fluid, with the rest of the fluid and the Earth making up
the surroundings. We’ll follow the segment of fluid as it moves from left to right, and perhaps
changing its diameter, moving vertically, and changing velocity all at the same time. The fluid
segment motion is caused by a pressure P1 pushing on the tube from the left side, a pressure P2

pushing on the tube from the right side (due to the surrounding fluid), as well as gravitational
forces.

P
1 A

1

A
2

P
2

v
1

v
2x

y

z

At the left end of a tube of flow, the segment of fluid moves though a distance ∆xi, and the
force pushing the fluid forward is Fi = PiAi. Since the displacement and force point in the same
direction, Wi = PiAi∆xi is positive. Notice that the last two factors are just ∆V (the volume
of the segment of fluid). At the other end of the tube, the same ∆V is pushed out (due to its
incompressibility). The work Wf = −PfAf∆xf = −Pf∆V is negative since the pressure and
displacement point in opposite directions.

Second, we have a gravitational force acting on the segment as it is displaced, which does work
on the fluid segment:

Wg = ~Fg · ∆~r

= −mg(hf − hi)
= −ρ∆V g(hf − hi)

where the mass of the fluid is m = ρ∆V . Therefore, we have a net external force due to both fluid
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pressure and gravity
Wext = WPi + WPf

+ Wg

We can write the Energy Principle for this segment of fluid, where the only energy that is
changing is the kinetic energy:

∆E = Wext + ��Q

∆K = Wext

1
2
(ρ∆V )(v2

f − v2
i ) = Pi∆V − Pf∆V − (ρ∆V )g(hf − hi)

We can divide through by ∆V : the physical interpretation is that it doesn’t matter what
particular small segment of fluid you choose. Rearranging terms, this gives us Bernoulli’s Equation:

1
2
ρv2

f + ρghf + Pf =
1
2
ρv2

i + ρghi + Pi

or
1
2
ρv2 + ρgh + P = constant

As you compare two points along the flow, it will always be true that ∆(KE/volume)+∆(U/volume)+
∆P = 0. If the segment of fluid experiences and increase its kinetic energy, that energy change
came from a decrease in one of the two other terms. It may be helpful to recall the microscopic
description of the fluid pressure: the molecules in the fluid collide with the surrounding fluid and
transfer linear momentum. Part of the momentum of the molecules is in a random direction (pro-
ducing P ), but a portion will also be in the direction of the flow (vave), and will instead contribute
to the kinetic energy term.

F.6 Applications of the Bernoulli Equation

F.6.1 Venturi Flow Meter

The Bernoulli Equation provides a convenient way to measure the fluid flow rate at different points
along a flow, using a device known as a Venturi flow meter. Consider a pipe which changes its
diameter from a wide region (1) to narrow (2) and then back to a wide region again, as shown in
the horizontal pipe in the photo below.

(1) (2)

The flow meter is the fork-like set of tubes connected to the bottom. The dark fluid can flow
freely within the flow meter, and is observed to have risen to the largest height within the middle
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tube (connected to the narrowest part of the flow.) We will use the Bernoulli Equation to explain
this observation.

Due to the continuity of the fluid (see §F.4.4), the decrease in cross-sectional area requires a
corresponding increase in the fluid velocity through that constriction:

v1 = v2

(
A2

A1

)
.

Since A1 < A2, we know that v1 < v2. When the pipe is kept at constant h1 = h2,

1
2
ρv2

1 +�
��ρgh1 + P1 =

1
2
ρv2

2 +�
��ρgh2 + P2.

and from the difference in velocities we can infer that P1 > P2. Note that for the location with
the larger velocity, the lower pressure manifests itself by its (relative) inability to push the blue
flow down. (Microscopically, recall that pressure comes from collisions: lower pressure means fewer
collisions per area.)

F.6.2 Outflow from a Tank

Imagine poking a series of holes in the side of a 2 liter soda bottle: streams of water would come
out of each hole. How would the speed of the streams depend on where the hole was located? The
photo below shows such a situation.

(1)

(2)

(3)

h
H

Which stream is leaving the cylinder fastest? Why? What is the evidence from the photo?

We will use Bernoulli’s Equation to determine the outflow velocity at each hole. Consider the
three locations marked on the picture. At location (1), at the top of the water column,

1
2
ρv2

1 + ρgh1 + P1 = 0 + 0 + Patm ≡ B.

We have assigned this expression the value B so that we can use it when making comparisons to
similar calculations further down the column. At locations (2) and (3), respectively,

1
2
ρv2

2 + ρgh2 + P2 =
1
2
ρv2

2 − ρgh + Patm

and
1
2
ρv2

3 + ρgh3 + P3 =
1
2
ρv2

3 − ρgH + Patm.
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We also know that a streamline connects (1) to (2) and a different streamline connects (1) to (3).
Therefore, we can write two Bernoulli Equations, one for each streamline:

B =
1
2
ρv2

2 − ρgh + Patm

and
B =

1
2
ρv2

3 − ρgH + Patm

By setting the right hand sides equal to each other, we can eliminate B and write:

1
2
ρv2

2 − ρgh + Patm =
1
2
ρv2

3 − ρgH + Patm

Which reduces to
v2
2 − v2

3 = 2g(h − H)

and tells us that since h < H, both sides of the equation are negative and therefore v2 < v3.

As the fluid drains from the cylinder over time, what will happen to the velocity measured
at location (3)? Will it increase, decrease, or remain the same?

F.7 Learning Objectives

After studying the material in this chapter, you should be able to:

• relate the microscopic and macroscopic descriptions of fluid pressure
• explain Archimedes’ Principle in terms of changes in fluid pressure with depth
• calculate the buoyant force on an object immersed in a fluid
• use pressure as a contribution to calculations of ~Fnet

• relate the microscopic and macroscopic descriptions of fluid velocity
• quantitatively relate a change in fluid velocity to a change in pipe cross section through

continuity
• relate changes in pressure, velocity, and height through the Energy Principle (Bernoulli’s

Equation)
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